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We consider the possibility that classical dynamical systems display motion in their lowest-energy state,

forming a time analogue of crystalline spatial order. Challenges facing that idea are identified and

overcome. We display arbitrary orbits of an angular variable as lowest-energy trajectories for nonsingular

Lagrangian systems. Dynamics within orbits of broken symmetry provide a natural arena for formation of

time crystals. We exhibit models of that kind, including a model with traveling density waves.
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In this Letter we will investigate a cluster of issues
around the question of whether time-independent, conser-
vative classical systems might exhibit motion in their
lowest-energy states. Fully quantum systems are the sub-
ject of a companion Letter [1]. Related issues have been
raised in a cosmological context [2,3], but those investiga-
tions consider quite different aspects, in which the time
dependence introduced by the expansion of the universe
plays a significant role. (The term ‘‘time crystal’’ has been
used previously to describe periodic phenomena in other
contexts [4,5].)

General considerations.—When a physical solution of a
set of equations displays less symmetry than the equations
themselves, we say the symmetry is spontaneously broken
by that solution. Here the meaning of ‘‘physical solution’’
can be interpreted differently in different contexts, but one
interesting case that will concern us here is of the lowest-
energy solutions of a time-independent, conservative, clas-
sical dynamical system. If such a solution exhibits motion,
we will have broken time-translation symmetry spontane-
ously. If the dynamical variable is an angular variable, then
the motion will be periodic in time, so the time-translation
symmetry is not entirely lost, but only reduced to a discrete
subgroup. Spatial periodicity is, of course, associated with
formation of ordinary crystals, so it is natural and sugges-
tive to refer to the formation of time crystals.

It is very easy to construct simple Lagrangians or
Hamiltonians whose lowest-energy state is a spatial crys-
tal. With �ðxÞ an angular variable, the potential energy
functions
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with all the Greek coefficients positive, are minimized for
d�1

dx ¼ �1

�1
, d�2

dx ¼ �
ffiffiffiffi
�2

�2

q
, respectively. In both cases the spa-

tial translation symmetry of the original potential is spon-
taneously broken; in the second case inversion symmetry is

broken as well. The combined inversion �ðxÞ ! ��ð�xÞ
is preserved in both cases, as is a combined internal space-

real space translation �ðxÞ ! �ðxþ �Þ � d�
dx �.

From this one might surmise that time crystals are like-
wise easy to construct, at least mathematically. Moreover,
higher powers of velocities appear quite naturally in mod-
els that portray the effects of finite response times, as we
replace

ð�ðtÞ ��ðt� �ÞÞn ~!�n _�
n
: (2)

On second thought, however, reasons for doubt appear.
Speaking broadly, what we are looking for seems peril-
ously close to perpetual motion. Also, if the dynamical
equations conserve energy, then the existence of a
minimum-energy solution where the variables trace out
an orbit implies that the energy function assumes its mini-

mum value on a whole curve in (�, _�) space—not, as we
expect generically, at an isolated point.
Dynamical equations.—That easy-impossible dichot-

omy carries over into the dynamical equations. If one
simply turns the space derivatives in Eq. (1) into time
derivatives, then the resulting Lagrangians
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2
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4
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(3)

are associated with the energy functions

E1ð�; _�Þ ¼ �1

2
_�
2
; E2ð�; _�Þ ¼ ��2
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2 þ 3�2

4
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4
:

(4)

The first of these is minimized at _�1 ¼ 0, the second at
_�2 ¼ �

ffiffiffiffiffiffi
�2

3�2

q
. So the analogue of our first symmetry-

breaking example in Eq. (1) has collapsed, but the second
survives, with a quantitative change.
On the other hand, if we convert the space derivatives in

Eq. (1) into momenta, the resulting Hamiltonians are
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H1ðp;�Þ ¼ ��1pþ �1

2
p2;

H2ðp;�Þ ¼ ��2

2
p2 þ �2

4
p4:

(5)

We find precisely the original algebraic structure for the

minimum-energy solutions, viz. p1 ¼ �1

�1
, p2 ¼ �

ffiffiffiffi
�2

�2

q
, re-

spectively. Their physical implications are entirely differ-

ent, though. Indeed, they correspond to _�1 ¼ _�2 ¼ 0: thus
no symmetry breaking occurs, in either case.

This disappointing consequence of the Hamiltonian for-
malism is quite general. Hamilton’s equations of motion
_pj ¼ � @H

@qj
, _qj ¼ @H

@pj
indicate that the energy function

Eðpjð0Þ; qjð0ÞÞ ¼ Hðpjð0Þ; qjð0ÞÞ, regarded as a function

of the dynamical variables at a chosen initial time, is
minimized for a trajectory with _pj ¼ _qj ¼ 0, since the

gradients on the right-hand side of Hamilton’s equations
vanish.

How do we reconcile this very general null result in the
Hamiltonian approach, with our positive result in the
Lagrangian approach? The point is that the Lagrangian
L2, which gave symmetry breaking, cannot be converted
into a Hamiltonian smoothly. Indeed, expressing the alge-
braic recipe for the Hamiltonian

Hðp;�Þ ¼ p _�� L ¼ p _�þ �

2
_�
2 � 1

4
_�
4

(6)

(in which we have set �2 ¼ 1 for simplicity and dropped
all ‘‘2’’ subscripts) as a function of

p ¼ @L

@ _�
¼ _�

3 � � _� (7)

leads to a multivalued function [6], with cusps where
@p

@
_

�
¼ 0, i.e., p ¼ � 2�3=2

33=2
, corresponding precisely to the

energy minima _� ¼ � ffiffiffiffiffiffiffiffiffi
�=3

p
. (See Fig. 1.) For � � 0,HðpÞ

is regular, but as � passes through zero there is a swallow-
tail catastrophe.
At the cusps the usual condition that the gradient should

vanish at a minimum does not apply, and so our null result
for smooth Hamiltonian systems is avoided.
For classical physics the Lagrangian formalism is ade-

quate, so let us follow that direction out further. A logical
next step would be to add a potential Vð�Þ to L. Doing that,
however, leads us directly into the problem with energy
conservation that we anticipated earlier. Minimizing V, we
will find a preferred value for � ¼ �0, but minimizing the
kinetic part will favor motion in �, and there is a conflict.
We can elucidate this issue as it arises for a general

Lagrangian system. Suppose that the energy function of a
system with many degrees of freedom is minimized by

nonzero velocities _�k
0 � 0, so that

0 ¼ @E

@ _�k

�������� _�k
0

¼
�

@2L

@ _�k@ _�j

��������� _�k
0

_�j
0: (8)

Then in the equations of motion

0 ¼ d

dt
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�
€�j þ . . . (9)

the coefficient of the acceleration in the direction €�j / _�j
0

vanishes at _�k
0. In that case the equations of motion, which

generally serve to determine the accelerations, require
supplementation. (As we shall discuss below, there are
physically interesting models that avoid any singularities
of this type.)
Brick-wall solutions.—Upon integrating

E ¼ 3

4
_�
4 � �

2
_�
2 þ Vð�Þ (10)

directly we obtain

tð�Þ ¼
Z � d�

�
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�
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ð�3Þ2 þ 4

3 ðE� Vð�ÞÞ
qr ; (11)

where the � signs are independent.
The argument of the inner square root is non-negative

if and only if Vð�Þ � Eþ �2=12 � �, where
� � E� E0 � 0 is the energy above the minimum kinetic

energy E0 ¼ � �2

12 . The inequality is saturated when
_� ¼ � ffiffiffi

�
3

p
, i.e., when the kinetic energy is minimized.

Close to a point �t where this happens,

_� � �
ffiffiffiffi
�

3

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

�
V 0ð�tÞð�t ��Þ

s
: (12)

Since � cannot continue past �t without violating
the bound Vð�Þ � �, it suddenly reverses direction,
_� ¼ � ffiffiffi

�
3

p ! � ffiffiffi
�
3

p
. Such a reversal conserves energy, but

requires a sudden jump in momentum. This is analogous to
the turning point of a ‘‘brick-wall’’ potential enforced by

E

 p

FIG. 1 (color online). Energy is a multivalued function of
momentum.
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an infinitely massive source. Unless �t is an extremum of
Vð�Þ, the acceleration diverges at �t, as required by the
equations of motion (9).

Small oscillations about the minimum of a generic
potential Vð�Þ � 1

2�ð���0Þ2 exhibit turning points of

this type, with bounded orbits that oscillate between

�t ¼ �0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=�

p
and �0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=�

p
. In the limit of

small �, the orbits ricochet about the minimum, with

nearly constant speed j _�j � ffiffiffi
�
3

p
, reconciling the apparently

contradictory conditions _� ¼ � ffiffiffi
�
3

p
and � ¼ �0.

Generalization.—A natural generalization of the model
considered above is obtained by allowing � to be a function
of �. Then the energy function (10) may be written

Eð�; _�Þ ¼ 3
4ð _�2 � 1

3�ð�ÞÞ2 þ ~Vð�Þ (13)

with ~Vð�Þ � Vð�Þ � 1
12�

2. The solution is again given

by Eq. (11), and we expect a similar phenomenology of
low-energy orbits. Indeed, the energy is minimized with

respect to _�, as above, by _� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�Þ=3p

; expanding
~Vð�Þ about a minimum we generically find ~Vð�Þ � V0 þ
1
2�ð���0Þ, where V0 and � are constants. Thus, as

before, low-energy orbits oscillate about �0 with nearly

constant speed
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�0Þ=3

p
.

In the special case ~Vð�Þ ¼ V0, the minimum-energy
orbits are well-behaved solutions of the first-order equation
_� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð�Þ=3p
. By choosing �ð�Þ appropriately, any

orbit �ðtÞ can be realized, in many ways, as the stable
minimum-energy solution to a Lagrangian of this type.

For constant ~V (which we now set to zero without loss of
generality), conservation of energy E � 0 leads to

_�
2 � 1

3
�ð�Þ ¼ �

ffiffiffiffiffiffiffiffi
4

3
E

s
: (14)

This equation is of a familiar form; it expresses the con-

servation of a pseudoenergy E ¼ �
ffiffiffiffiffiffi
4
3E

q
for a particle with

mass m ¼ 2 and potential V ð�Þ ¼ ��ð�Þ=3. This result
allows us to infer the qualitative dynamics, based on famil-
iar mechanical concepts. The only turning points are of the

usual variety: putting _� ¼ 0 into Eq. (14) we find turning
points where E ¼ V ð�tÞ ¼ ��ð�tÞ=3. The motion is
confined to a region where V ð�Þ � E. Thus the model
can support motions in which the velocity changes sign
smoothly, but these motions require higher energy than the
minimal orbit, which is unidirectional.

Avoiding singularities.—For general potentials ~Vð�Þ,
we have noted that low-energy solutions of Eq. (13) typi-
cally display singular behavior—infinite acceleration—at
turning points. However, if ~Vð�Þ is bounded above, solu-
tions of sufficiently high energy will be smooth provided
that E � ~Vmax.

Quantum mechanics can ameliorate the singularities. In
interesting cases the Hamiltonian is a multivalued function

of the momentum. This implies that the momentum does
not provide a complete set of commuting observables.
Nor, therefore, does the position. Wave functions must be
defined over expanded spaces [6,7].
Naturally flat directions; double sombrero.—It can be

natural to have energy constant along an orbit, if the points
of the orbit are related by symmetry. If we want this
situation to occur along a trajectory for the minimum-
energy state, then the symmetry must be spontaneously
broken.
Consider first a Lagrangian with a ‘‘sombrero’’ kinetic

term, together with the classic sombrero potential:

L ¼ 1

4
ð _c 2

1 þ _c 2
2 � �Þ2 � Vðc 1; c 2Þ;

V ¼ ��

2
ðc 2

1 þ c 2
2Þ þ

�

4
ðc 2

1 þ c 2
2Þ2:

(15)

This defines a ‘‘double sombrero’’ model, exhibiting cir-
cular motion at constant speed in the lowest-energy state.
We may rewrite this model and its generalizations in terms
of polar fields � and �, where c 1 þ ic 2 ¼ �ei� � ’.
Then the double sombrero Lagrangian takes the form

L ¼ 1

4
ð _�2 þ �2 _�2 � �Þ2 þ�

2
�2 � �

4
�4: (16)

If � is set equal to its value
ffiffiffiffiffiffiffiffiffiffiffiffi
2�=�

p
at the minimum of

Vð�Þ, this reduces to our original Lagrangian (3).
Generalizing, any Lagrangian with a kinetic term that is

a polynomial in _�, _�, and �, and a potential energy depend-
ing only on �, will preserve the symmetry � ! �þ �.
Charge and locking.—The charge operator asso-

ciated with the original (broken) symmetry is
Q ¼ �R

ið’�	’� � ’	’Þ where 	’ ¼ @L
@ _’ depends only

on _� and �. Thus in states with constant, nonvanishing

values of � and _�we have a nonzero, uniform density ofQ.
This is significant in two ways:
First: If we suppose that our system is embedded in a

larger symmetry-conserving bath and undergoes a transi-
tion to the symmetry-breaking state, e.g., that it is a mate-
rial body cooled through a phase transition, then the
transition will necessarily be accompanied by radiation
of an appropriate balancing charge.
Second: Although invariance under both infinitesimal

time-translation �ðtÞ ! �ðtþ �Þ and infinitesimal phase

(charge) translation � ! �þ � are broken by constant- _�
solutions �ðtÞ ¼ !tþ 
, the combined transformation
with !�þ � ¼ 0 leaves the solution invariant. Thus there
is a residual ‘‘locked’’ symmetry. To exploit it, we can go to
a sort of rotating frame, by using the shifted Hamiltonian
~H ¼ H�!Q to compute the evolution [3,8]. (Here we
normalize Q so that ’ has unit charge.) In the rotating
frame, the equations of motion will not contain any explicit
time dependence, but there will be a sort of effective
chemical potential (associated however with a broken
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symmetry). The most interesting effects will arise at
interfaces between the locked phase and the normal phase,
or between different locked phases, as exemplified in the
preceding paragraph.

Space-time structure; more complex states.—We can
also contemplate slightly more complex examples, that
support qualitatively different, richer physical effects. If
there is a potential forr’, or ultimately forr�, that favors
gradients, then we can have a competition between the
energetic desirability of putting � at the energetic mini-
mum and accommodating nonzero gradients. Unlike the
case of time derivatives, there is no general barrier to
reaching a stable compromise. To keep things simple, let
us suppress the underlying ’ structure and consider the
potential

Vð�Þ ¼ �1

2

0
@1� a�2 � b

�
d�

dx

�
2

1
A

2

(17)

with a, b > 0. This potential is minimized by

�0ðxÞ ¼
ffiffiffi
1

a

s
sin

� ffiffiffi
a

b

r
xþ �

�
;

which reduces the translation symmetry to a discrete sub-

group. Constant _� produces a charge density wave.
If we also have a term of the form

Vgradient ¼ �2

2

�
d�

dx
��

d�

dx

�
2

(18)

then at the minimum�0ðxÞwill develop spatial structure as
well, according to �0ðxÞ ¼ ��0ðxÞ þ 
, breaking the
phase (charge) symmetry completely. (Note that Vgradient

respects the symmetry � ! �þ �.)

We can engineer similar phenomena involving _� most
easily if we work at the level of the energy function. One

can derive general energy functions involving powers of _�
from Lagrangians of the same kind, so long as there are no

terms linear in _�. Thus, if we have additional term

Ekineticð�Þ ¼ �3

2

0
@
�
d�

dx

�
2 � 1

v2
_�
2

1
A

2

(19)

then at the minimum we have

�0ðx; tÞ ¼ ��0ðx; tÞ þ 
; (20)

�0ðx; tÞ ¼
ffiffiffi
1

a

s
sin

� ffiffiffi
a

b

r
ðx� vtÞ þ ~�

�
: (21)

Here in Eq. (21) we have adapted our solution �0ðxÞ for
the potential (17) by taking � ¼ �vtþ ~�. In doing this
we assume that the energy intrinsically associated with
time derivatives of � vanishes [or that it is dominated by
the locking effects of Eqs. (18) and (19)]. Both spatial and

time translation are spontaneously broken, as is reflected in
the disposable constants ~�, 
, and so is time-reversal T, as
reflected in the disposable sign.
Combining Eqs. (20) and (21), we now have a traveling

charge density wave. Thus this example exhibits its time-
dependence in a physically tangible form. The residual
continuous symmetry is reduced to a combined discrete
time-space-charge transformation. Although our construc-
tion has been specific and opportunistic, it serves to estab-
lish the existence of a universality class that, since it is
characterized by symmetry, should be robust. It is note-
worthy that cyclic motion of � in internal space has given
rise to linear motion in physical space.
Relativistic Lagrangians.—All of our constructions

above have been nonrelativistic. In a relativistic theory
there are relations among the coefficients of time and
space gradient terms. The relativistic quartic term
L / ðð@0�Þ2 � ðr�Þ2Þ2 leads to an energy that is un-
bounded below, for large gradients of one kind or another.
But use of a sextic enables positive energy. Indeed, the
energy function for ðð@0�Þ2 � ðr�Þ2Þn is

ð ð2n� 1Þð@0�Þ2 þ ðr�Þ2Þðð@0�Þ2 � ðr�Þ2Þn�1: (22)

For n odd this is semipositive definite, with a zero at
ð@0�Þ2 ¼ ðr�Þ2 unless n ¼ 1. For n even it has no definite
sign. Bounded energy requires only that the leading term
have odd n and a positive coefficient and that the coeffi-
cient of the n ¼ 1 term be non-negative. This consideration
seems to have been overlooked and might help to constrain
the models of [2,3].
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