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We present a robust scheme by which fractional quantum Hall states of bosons can be achieved for

ultracold atomic gases. We describe a new form of optical flux lattice, suitable for commonly used atomic

species with ground state angular momentum Jg ¼ 1, for which the lowest energy band is topological and

nearly dispersionless. Through exact diagonalization studies, we show that, even for moderate inter-

actions, the many-body ground states consist of bosonic fractional quantum Hall states, including the

Laughlin state and the Moore-Read (Pfaffian) state. These phases are shown to have energy gaps that are

larger than temperature scales achievable in ultracold gases.
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There is intense interest in finding new settings in which
topological phases of matter analogous to fractional quan-
tum Hall (FQH) states appear. Ultracold atomic gases are
ideal systems with which to achieve this goal: they allow
studies of strong correlation phenomena for both fermions
and bosons, and FQH physics can be approached for
homogeneous fluids [1] as well as for atoms confined in
optical lattices [2].

While existing theories of FQH-like phases in lattices
have focussed on tight-binding models [3–12], one of the
most promising routes to topological flat bands for ultra-
cold atoms is through optical flux lattices (OFLs) [13–15].
An OFL uses a set of laser beams to produce a spatially
periodic atom-laser coupling that induces resonant transi-
tions between two (or more) internal atomic states. The
resulting energy bands, in particular the lowest one, have
nonzero Chern numbers, and can be made narrow in energy
[15]. This opens the path to experimental studies of novel
strong correlation phenomena in topological flat bands,
notably the FQH effect of bosons.

We present, in this Letter, the first characterization of
the many-body ground state of bosons in an OFL. We start
with the design of a novel type of OFL, which fully
exploits the structure of the most commonly used (bosonic)
atomic species. We devise a method to optically dress three
internal states in a more general manner than previous OFL
proposals [13,14], which leads to much narrower topologi-
cal bands [15]. Our proposed OFL scheme is highly robust:
it uses three coplanar optical beams derived from a single
laser source, which do not require relative phase locking.
For optimized parameters the lowest band of the OFL has
Chern number 1 and is nearly dispersionless, closely analo-
gous to the lowest Landau level for a charged particle in a
uniform magnetic field. We use exact diagonalization to
determine the many-body spectrum of a bosonic gas in this
OFL. We show that FQH ground states appear for rela-
tively weak atom interaction at the same filling factors as

for a continuum Landau level [1]. Our work provides a
concrete experimental scheme by which FQH states of
bosons can be realized with large energy scales.
Furthermore, it provides the first example of a non-
Abelian quantum Hall state (the � ¼ 1 Moore-Read state
[16]) in a lattice model at high particle density with only
two-body interactions.
We focus, in this Letter, on the case of atoms with

ground state angular momentum Jg ¼ 1, which is the

case for several bosonic isotopes of alkali metal species.
We denote jXi, jYi, jZi a basis of the ground state, defined
such that ĴXjXi ¼ 0 (and similarly for Y and Z). Here the
set of directions X, Y, Z represents an orthogonal trihedron

of the physical space [see Fig. 1(a)] and ĴX stands for the
component of the angular momentum operator along the X
direction. One can also replace jXi, jYi, jZi by a triplet of
internal states selected among a more complex level
scheme [17]. Our scheme will apply provided each pair
of states can be coupled by a resonant two-photon Raman
transition with a negligible spontaneous emission rate [18].
We assume that jXi, jYi, jZi are the eigenstates of the

atomic Hamiltonian in the absence of atom-laser coupling.
We suppose that these three states are nondegenerate and
nonequally spaced, and their energies are such that EX <
EY < EZ, with EZ � EY � EY � EX. For alkali atoms this
situation can be reached by illuminating the atomic sample
with microwaves close to the hyperfine resonance (see
Supplemental Material [19]). We denote by z the (1, 1, 1)
direction of the X, Y, Z trihedron, and assume that the
center-of-mass motion of the atoms along the direction z
is frozen. Therefore, we consider, in the following, only the
atomic motion in the perpendicular xy plane [see Fig. 1(a)].
The atoms are irradiated with laser beams propagating

in the xy plane along three directions making an angle

of 2�=3 with each other. The three wave vectors are k1 ¼
k=2ð ffiffiffi

3
p

ux þ uyÞ, k2¼k=2ð� ffiffiffi

3
p

uxþuyÞ, and k3 ¼ �kuy,

where fux; uyg is an orthogonal unit basis of the xy plane.
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Here k stands for the typical wave number of the laser
beams. We choose the frequency components in each laser
beam so that an atom can undergo resonant Raman tran-
sitions between the three internal states, by absorbing a
photon in one wave and emitting a photon in a stimulated
manner in another wave. The momentum change in such
a transition is �qi, where qi ¼ ki � kiþ1. Here, we set
k4 � k1 and take @ ¼ 1.

Suppose first that each beam i consists only of a mono-
chromatic plane wave with frequency !i and phase ’i,
and that the values of !i are chosen such that the three
Raman conditions are fulfilled: !1 �!2 ¼ EY � EX,
!2 �!3 ¼ EZ � EY , [and thus, !1 �!3 ¼ EZ � EX,
see Fig. 1(b)]. For each momentum p there is coherent
coupling of three states fjX;p� k1i; jY;p� k2i; jZ;p�
k3ig forming an equilateral triangle in momentum space
[Fig. 1(c)]. This coupling can be written (see Supplemental
Material [19])

V̂ ¼ ��ðjYihXjeiðq1�rþ’1�’2Þ þ jZihYjeiðq2�rþ’2�’3Þ

þ jXihZjeiðq3�rþ’3�’1ÞÞ þ H:c:; (1)

where H.c. stands for Hermitian conjugate. The amplitude
and sign of� can be adjusted by tuning the laser intensities
and their detuning from the atomic resonance. That all
three Raman transitions in Eq. (1) have the same amplitude
is ensured by (i) taking the same intensity for each laser
beam, and (ii) choosing in-plane linear polarizations. A
similar ring-coupling scheme was used in Ref. [20] to
implement the Peierls substitution in a 1D optical lattice.
However, in Ref. [20], only two laser Raman transitions
were used and the ring was closed using radio frequency
transitions, which is not appropriate for our purpose.

With only one triplet of laser frequencies as in Fig. 1(b),
we do not produce the desired infinite periodic lattice for
the atomic motion in momentum space [15]. However,
this goal can be reached by adding, inside the beams i,
two other triplets of frequency components !0

i and !00
i ,

i ¼ 1, 2, 3. Here, the roles are circularly exchanged with
respect to the first triplet !i: the !

0
i (respectively, !

00
i ) are

such that !0
2 �!0

3 ¼ EY � EX and !0
3 �!0

1 ¼ EZ � EY

(respectively,!00
3 �!00

1 ¼ EY � EX and!00
1 �!00

2 ¼ EZ �
EY). We suppose that the differences between the average
frequencies �!, �!0, �!00 of the triplets are much larger
than the splittings E� � E�. Raman processes involving

absorption from a frequency triplet and emission in another
triplet, thus, play a negligible role.
With the three frequency triplets acting simultaneously

on an atom, the family of states that are coupled to a given
initial state can be represented by the infinite lattice in
momentum space shown in Fig. 1(d). Since there are three
possible Raman transitions and three possible pairs of
beams to induce a given transition, the atom-laser coupling

V̂ generalizing (1) is now characterized by nine matrix

elements. These elements depend on the nine phases ’ð0;00Þ
i

and are summarized in Table I, from which it is straightfor-

ward to construct the coupling V̂.
In order to characterize the possible nontrivial topology

associated with the lattice in momentum space, we now
evaluate the total phase gained by an atom when it under-
goes a series of Raman transitions X ! Y ! Z ! X that
cause it to travel around one of the triangles of Fig. 1(d).
The resulting phase is different for upwards pointing tri-
angles [such as the one of Fig. 1(c)] and downwards
pointing ones [triangles labelled �, �, � in Fig. 1(d)].
For an upwards pointing triangle, the phase is always
zero. Indeed, moving around its sides involves absorption

TABLE I. Phases of the Raman coupling matrix elements.
Each line corresponds to a given momentum kick qi ¼ ki �
kiþ1, and each column to a given pair of internal atomic states.
This 3� 3 array can be understood as a determinant: each of the
six terms appearing in the calculation of this determinant corre-
sponds to one of the six types of triangles in Fig. 1(d). The terms
with a positive (negative) sign in the determinant calculation are
for the upwards (downwards) pointing triangles.

X ! Y Y ! Z Z ! X

q1 eið’1�’2Þ eið’00
1
�’00

2
Þ eið’0

1
�’0

2
Þ

q2 eið’0
2
�’0

3
Þ eið’2�’3Þ eið’00

2
�’00

3
Þ

q3 eið’00
3
�’00

1
Þ eið’0

3
�’0

1
Þ eið’3�’1Þ

FIG. 1 (color online). (a) Atoms with a ground state with angular momentum Jg ¼ 1 are irradiated by three laser running waves
propagating in the xy plane, whose wave vectors ki, i ¼ 1, 2, 3 make an angle of 2�=3 with each other. (b) Triplet of light frequencies
!i ensuring that the three possible Raman transitions are resonantly driven. (c) Graphic representation of three internalþmomentum
eigenstates, which are resonantly coupled by the laser beams whose frequencies are shown in (b). (d) Infinite array of internalþ
momentum eigenstates that are resonantly coupled when three triplets of frequencies !i (red), !0

i (green), !00
i (blue) are

simultaneously applied. (See Table I for full details, without requiring color information.)
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and stimulated emission of photons whose frequencies
belong to the same triplet, e.g., !i for Fig. 1(c).

Therefore each laser phase ’ð0;00Þ
i enters both with aþ and

a� sign in the total accumulated phase, leading to a null
result.

Downwards pointing triangles, on the other hand, cor-
respond to a nontrivial phase. Consider for example the
clockwise oriented path around the sides of triangle � in
Fig. 1(d): (i) the X ! Y transition is accompanied by a
change of atomic momentum q2, and a phase change
’0

2 � ’0
3 (see Table I); (ii) the Y ! Z transition is along

q1, with the phase change ’00
1 � ’00

2 ; (iii) the Z ! X tran-
sition is along q3, with the phase change ’3 � ’1. As a
result, the phase accumulated around triangle � is

�� ¼ ’00
1 � ’1 þ ’0

2 � ’00
2 þ ’3 � ’0

3: (2)

We can, similarly, calculate the phases ��;� for the two

other downwards pointing triangles. Although �� þ
�� þ�� ¼ 0, we can identify configurations such that

each phase takes a nontrivial value. For example the choice

’1 ¼ 2�=3, ’3 ¼ �2�=3, and all other ’ð0;00Þ
i ¼ 0 yields

�� ¼ �� ¼ �� ¼ 2�=3 mod 2�: (3)

From now on, we will stick to this choice, together with the
assumption that �> 0, which is obtained for an alkali-
metal atom by tuning the lasers between the D1 and D2

resonance lines.
In a practical implementation, all frequency components

can be derived from the same monochromatic laser source.

The frequencies!ð0;00Þ
i and phases ’ð0;00Þ

i of beam i can be set
by a single acousto-optic modulator driven by a program-
mable function generator, and injected in the same optical
fibre. There is no need to control the path lengths of the
three optical beams with interferometric precision since
their contributions cancel in the phases ��;�;�. For ex-

ample, if the path length of beam 1 increases by ‘, both
phases ’1 and ’

00
1 entering in (2) increase by k‘, and�� is

unchanged. Physically this cancellation originates from the
fact that, on this circuit, the atom both absorbs and emits a
photon in each of the beams.

The OFL formed in this way has a reciprocal
lattice spanned by the basis vectors G1 ¼ 3q1 and

G2 ¼ q2. The real space lattice vectors are a1 ¼
½2�=ð3 ffiffiffi

3
p

qÞ�ð ffiffiffi

3
p

ux þ uyÞ and a2 ¼ ½4�=ð ffiffiffi

3
p

qÞ�uy, where
q ¼ jqij ¼

ffiffiffi

3
p

k. This geometry is equivalent to that of the
three-state triangular OFL of Ref. [15]. However, the
phases in the reciprocal space tight binding model differ:
here we have phases 0 and 2�=3 for the upwards and
downwards pointing triangles, as opposed to �=3 for
each [15]. Nevertheless, the properties of the OFLs are
very similar: in each real-space unit cell the lowest energy
dressed state experiences N� ¼ 1 flux quantum; the result-

ing low-energy bands are analogous to Landau levels. In
particular, the lowest band has Chern number 1, and very

narrow energy width, W, over a broad range of lattice
depths �. Here, we focus on the case � ¼ 3ER [where
ER � q2=ð2mÞ is the recoil energy for atomic mass m]
close to which this bandwidth has a (local) minimum of
W ’ 0:015ER [21]. In view of this very small bandwidth,
the system is highly susceptible to the formation of
strongly correlated phases even for relatively weak
interactions.
We have used exact diagonalization to study the ground

states of interacting bosons occupying the lowest energy
band of the OFL for� ¼ 3ER. (We neglect the population
of higher bands, since the gap to the next band is very large,
� ’ 46W.) We consider the bosons to interact via spin-
independent contact interactions, which is a good approxi-
mation for 87Rb. We write the two-dimensional coupling

constant as g2D ¼ @
2

m
~g, where ~g is dimensionless. For

atoms with 3D scattering length as restricted to 2D by a
harmonic confinement of oscillator length a0, and neglect-

ing (sub)band mixing, this is ~g ¼ ffiffiffiffiffiffiffi

8�
p

as=a0 [22]. We
study a finite system in a periodic geometry, with sides
L1 ¼ N1a1 and L2 ¼ N2a2, where N1;2 are integers. The

total flux is thenN� ¼ N1N2, so forN particles the Landau

level filling factor is � � N=N�. We determine the low-

energy spectrum of the many-body system at each (total)
crystal momentum using standard Lanczos methods.
For very weak interactions, ~g � 1, the bosons form a

condensate in the minima of the band dispersion. However,
we find that even for moderate interactions ~g * 0:2 this
(compressible) condensed phase is replaced by strongly
correlated (incompressible) FQH states at filling factors
� ¼ 1=2, 2=3, 3=4, and 1. Here, we focus on the FQH
states at � ¼ 1=2 and 1. (Results for � ¼ 2=3, 3=4 are
described in the Supplemental Material [19].)
Evidence for the appearance of incompressible phases

is found by calculating the discontinuity in the chemical
potential �� for the ground state: the difference between
the chemical potential for adding a particle and that for
removing a particle. A nonzero and positive �� indicates
that the system is incompressible. To minimize finite-size
effects, we define [23] �� � N½ENþ1=ðN þ 1Þ þ EN�1=
ðN � 1Þ � 2EN=N�, where EN is the ground state energy
for N particles.
In Fig. 2, we plot the dependence of �� on interaction

strength ~g. For � ¼ 1=2 there is an onset of incompr-
essibility for ~g * 0:2, and for � ¼ 1, incompressibility
appears for ~g*0:4. In the thermodynamic limit, N ! 1,
the transitions from compressible �� ¼ 0 to incompress-
ible ��> 0 should be sharp, and can even be discontinu-
ous for first-order transitions, but are rounded in Fig. 2 by
finite-size effects.
To explore the nature of the incompressible phases, it is

instructive to study their excitation spectra. Each incom-
pressible phase evolves continuously as ~g increases; we
focus on the limit ~g ! 1 which is representative of this
phase. We still restrict particles to the lowest 2D band, so
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this limit is equivalent to reducing the bandwidth to zero.
The spectra, Fig. 3, show all the expected properties of
the bosonic Laughlin (� ¼ 1=2) and Moore-Read (� ¼ 1)
states. On this periodic geometry, these topologically
ordered incompressible phases have ground state degener-
acies (of 2 and 3, respectively) in the thermodynamic limit,
separated by an energy gap from the remaining excitations.
Even for the finite systems of Fig. 3, these ground state
degeneracies appear clearly. Results on other system sizes
and geometries (not shown) confirm that these near degen-
eracies are robust topological features, not imposed by
symmetries.

While suggestive, the ground state degeneracy alone is
insufficient to establish the nature of these phases. To
achieve this, we show that they are equivalent to the phases
that appear for the continuum lowest Landau level (LLL),
which are known to be the Laughlin state (� ¼ 1=2) and
the Moore-Read state (� ¼ 1) [1]. We establish this

equivalence by studying the evolution of the many-body
spectrum for a series of Bloch wave functions that inter-
polate between those of the lowest band of the OFL and
those of the LLL. To do so, we consider a fictitious atom
with Ns ¼ 12 internal states, and represent the LLL by the
Ns ¼ 12 triangular OFL of Ref. [15], the lowest band of
which has properties that are indistinguishable from those
of the LLL for suitable coupling�0 ’ 10ER [24]. We place
nine additional internal states at the midpoints of the bonds
of Fig. 1(d), coupled to each other and to the original states
X, Y, Z by bonds of strength �0 and with �=12 flux
through each new triangular plaquette [25]. Choosing
ð�;�0Þ ¼ ð3ð1� �Þ; 10�ÞER and varying � leads to
smooth interpolation of the lowest energy band and the
many-body spectrum, from those of the present model
(� ¼ 0) to those of the LLL (� ¼ 1). In all cases (� ¼
1=2, 2=3, 3=4, 1), the energy gap remains open, indepen-
dent of boundary conditions, and showing no evidence of
closing in the thermodynamic limit. This adiabatic con-
tinuity establishes the equivalence of these topological
phases [26,27], guaranteeing that all topological character-
istics are the same. Indeed, under this interpolation, we find
very little change in the spectra, showing that this OFL is a
very close representation of the LLL. For example, for the
LLL, the � ¼ 1=2 state has zero interaction energy, as the
two-body correlation function vanishes exactly at zero
range. Here, the � ¼ 1=2 state in the OFL has EN=N ’
7� 10�5~gER [see Fig. 3(a)] showing that the zero-range
two-body correlation function nearly vanishes.
To summarize, we have proposed a robust atom-laser

configuration that can lead to FQH states of bosons in a
well-accessible range of parameters. The minimal interac-
tion strength ~g � 0:2 for obtaining FQH states corresponds
to a 2D confinement frequency of * 7 kHz for Rb, which
is readily achieved in an optical lattice. A clear signal of
the formation of strongly correlated phases would be the
appearance of density plateaus in in situ images of the gas,
arising from incompressibility ��> 0. For the Laughlin
state, we find from Fig. 2 �� � 0:02ER for ~g ¼ 0:4, that
is, 10 nK for 87Rb, setting the temperature scale at which
these features can be observed.
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